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The following system of first-order ordinary nonlinear differential
equations, which in certain approximations simulates the plasmo-
chemical process of conversion of methane to acetylene in a hydrogen
plasma jet, was examined in [1]:
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Here, c; is the mass concentration of the i-th substance (i = 1-5,
1=CH,, 2=CyH,, 3—C,H;, 4—~C, 5—H,), hij is the coefficient in the
expansion of the enthalpy of the i-th substance with respect to tem-
perature T, h; is the heat of formation of the i~th substance, ki(T) is
the rate constant for decomposition of the i-th substance, N and M are
constants of integration determined from the initial conditions, R is
the gas constant, and 4 is the molecular weight of the i-th substance.

By means of a numerical integration of system (0.1)=(0.3)on a
computer for various initial methane concentrations ¢;(0) (c5(0) =1 —
— ¢;(0), c3(0) = c3(0) = c4(0) = 0), initial temperatures T(0), and
initial plasma jet velocities v(0), it was shown that the variation of
c;(0) and T(0) has an important influence onthe kinetics of the process,
whereas the variation of v(0) does not affect the kinetics of the chem-
ical reactions, but merely changes the spatial scales of the process.

Since system (0.1)=(0.3) cannot be solved analyticaily, itisim-
possible to both establish directly a functional relationship between its
solutions and the initial conditions and investigate the dependence of
the solution on the initial conditions in general form,

However, it is possible touse the results of a-numerical integration
of system (0.1)=(0.3) with various initial conditions to establish ap-
proximate relations between the solutions and the initial conditions
for a particular value of z = zp,. For zmy we can take the point at
which the acetylene concentration obtained from solving system
(0.1)~(0.8) reaches a maximum, which, as shown in [2], canbelargely
preserved by a suitable choice of the conditions and point of cooling.

In what follows, we establish the approximate functional depen-
dence (at the point zy,) on the initial conditions T(0) and c;(0) (the
inputs) for the following four quantities (the outputs):

a) The length of the section from the beginning of the reactor
(z =0) to z = zp,. This section, through which the process of conver-
sion of methane to acetylene chiefly takes place, will be denoted by
L and, in accordance with the terminology of [3,4], will be called
the effective length of the plasmochemical reactor.

b) The reaction time Ty, determined from Eq. (0.3),
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¢) The maximum acetylene concentration cs(zy).
d) The degree of decomposition of the methane
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Two aspects of the problem will be considered. First, a method is
proposed which makes it possible to treat the plasmochemical reactor
described by a system of equations analogous to (0.1)-(0.3) as a
nonlinear converter. Secondly, the effect of fluctuations of the initial
conditions is examined.

1. Dependence of L, Tm, ¢3(Zm), and § on ¢;(0) and T(0). By
numerically integrating system (0.1)=(0.3) for five variants of each of
the inputs ¢;(0) or T(0) with the other input fixed, we can construct
graphs of all the outputs L, T, cs(Zy), and S as functions of the in-
puts ¢y (0) and T(0). .

Curves 1~4 in Fig. 1 give the dependence of ¢cy(zip), L, Ty, and
S on T(0) for fixed ¢y (0) = 0.95 and v(0) =3 - 10* cm/sec (here and
henceforth the concentrations are given in weight fractions).

Curves 1~4 in Fig. 2 give the dependence of Cy(zm), L, 7Ty, and
S on ¢ (0) for fixed T(0) = 3.5 « 10% K and w(0) = 8 + 10* cm/sec.

Using these graphs, it is possible to derive approximate linear
quadratic analytical relations between the given outputs and inputs.
The relations between the outputs ¢z(Zm), L, Tpy,and S and the inputs
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T(0) and c, (0) are represented by Eqs. (1.1)—(1.8), respectively:
€5 (2g) = 0.125 -+ 3.5-10% (T (0) — 2000°),
2000 << 7 (0) < 3000° K
¢5 (2m) = 0.476 - 3.44-10™4 (T (0) — 3000°) —
— 1.6-1077 (T (0) — 3000%2 ,
30007 < T (0) << 3500 °K ; (1.1)
= 67 — 9-10™2 (T(0) — 2000%) + 0.44-10™% (T (0) — 2000°) 2,
2000° < T (0) < 3000° K

L = 24—2.6-1072 (T (0) — 3000°) — 0.8-1075 (T (0) — 3000°)?,

3000° < 7 (0) < 3500° K (1.2)
= 2.357-1073—2.99.10-¢ (T (0) — 2000°) +

+1.44-107° (T (0) — 2000)2,

2000° < T(0) < 3000° K
v, ==0.78-1078 — 0.113-1073T(0) — 3000°),

3000° < T (0) < 3500° K ; (1.3)
§ = 24.7 -+ 5.83-1072 (T (0) — 2000,

2000° < T (0) << 3000° K ;
S = 83 -+ 0.558-107% (T (0) — 3000°) — (1.4)
— 0.464-10™* (T (0) — 3000°)?2,

3000° < T (0) < 8500° K ;
e3 (zm) = 0.5887 -+ 0.33 (¢, (0) — 0.87), 0.87 < ¢ (0) < 0.93
¢3 (zm) = 0.6085 - 0.4758 (¢, (0) — 0.93) — 4.29 (¢, (0) — 0.93)%, (1.5)

0.93 < ¢, (0) < 0.99;

L= 2.0 - 2.7 (¢, (0) — 0.87) + 3.88-10% (¢, (0) — 0.87)2,

0.87 < ¢, (0) << 0.93;
(1.6)
L= &7+ 2447 (¢, (0) — 0.93) + 2.04-10% (¢, (0) — 0.93)2,
0.93<e; (0) << 0.9
m = 0.277-1071 — 0.625-107 ¢, (0) 4 0.353-10°1 ¢2,(0),
(1M

0.87 < ¢, (0) < 0.99;

S = 100, 0.87 <C ¢, (0) < 0.93,

S = 100 — 0.391-10% (¢;(0) — 0.93) — 0.417 (¢,(0) — 0.932, (1.8)
0.93 < ¢, (0) < 0.99.

These relations show that with respect to the inputs ¢;(0) and T(0)
the plasmochemical reactor is a nonlinear converter and the graphs
and corresponding approximate analytic expressions are its nonlinear
characteristics.

2. Effect of fluctuating initial conditions on the solutions of system
(0.1)~(0.3). Formulation of the problem. In the above calculations
¢y(0) and T(0) were assumed to be independent of time. Thus the
characteristics obtained for the reactor, regarded as a nonlinear con-
verter, are its static characteristics.

In fact, the initial methane concentration and the initial tempera-
ture of the gas mixture experience random fluctuations in time.

We will describe the random fluctuations of ¢;(0) and T(0) interms
of stationary random function [5, 6], assuming that c;(0) and T(0) are
absolutely continuous stationary normal random functions of time, In
order to compare the results obtained with experimental data, it is
obviously necessary to make the further assumption that the random
functions are ergoic. For this assumption it is sufficient that their
autocorrelation functions do not tend too slowly to zero [6].

Since the investigated random functions vary on a finite interval
[X., x°] (bere x represents either of the two functions ¢;(0) or T(0)), it
is necessary to use truncated normal distributions [7].

The one-dimensional truncated normal distribution has the following
form:
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Here, oy is the standard deviation of the stationary random func-
tion.

The quantity Dy is selected so that f{x;} is normalized to unity on
the given interval of the random function.

If the inputs of the nonlinear converter are stationary random func-
tions of time, its outputs L, Ty, cs(zm), and S will also be stationary
random functions of time (we assume that the nonlinear converter has
stationary characteristics). In order to determine the statistical prop-
erties of these random functions we use Eqs. (1.1)~(1.8), having as~
surned that the nonlinear converter is inertialess [6, 8, 9% i.e., for a
given time ¢, any output y(t) is expressed as a function of some input
x(t) at the same moment of time:

y (1) = ¢ [2(5)). (2.2)

3. Determination of the mathematical expectations and correla~
tion functions of L, cs(zry), and 8. A knowledge of the correlation
function and mathematical expectation of the random output function
is of fundamental practical importance in the investigation and de-
sign of nonlinear systems.

The mathematical expectation <y> of the stationary random
process y(t) at the output of an inertialess nonlinear converter is de-
fined as follows [10]:

<y = >+ <y

(3.1)
where

2 k
<y =Dy Z Ay {Z Tr@% Gyl (<2 —

=0 I=1 :

— 2 )0, () — O (E*n} ;
2 k
Yoy = D1 Z A/»2{Z #ﬁi—l)fsxl (Kzy —
=0 =0
— @)L [Q(EY) — omzon}: (3.2)

g is a value of x dividing the region of variation [x., x°] into two parts;
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Here, Ak,, Ak, are the constant coefficients in Eqs. (1.1)=(1.8).
The formula for the correlation function is written as follows [10]:
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14(9) is the normalized autocorrelation function of input x.
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In practical calculations, using (3.4) it is necessary to confine one-
self to a finite number of terms of the series N. An estimate of the ac-
curacy of the approximate determination of the correlation function
Ry(e) is given by the following expression {10]:

[By0)— R/ (8) <oy —0,: (3.7
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n=1
The results of a calculation of the dependence of the mathematical
expectations <eg (2z5)>, <L), and ¢Sy on the standard deviation of the ini-
tial temperature o, for a given mathematical expectation of the initial
temperature ¢7 (0)> = 3000° K and a constant value of the inirial
methane concentration ¢;(0) = 0.95 are represented by curves 1, 2,
and 3 in Fig. 3, respectively. Similarly, in Fig. 4 curves 1, 2, and
3 represent the dependence of <¢; (z;)>, <Ly, and <S»on the standard
deviation of the initial methane concentration o, (mathematical ex-
pectation of the initial methane concentration <¢ (0)> = 0.95 and
the constant value of the initial temperature T(0) = 3500° K).
On the basis of these graphs we constructed the following approxi-
mate analytic expressions:

Ceg (om)> = 0.475—3.466-10~%0; — 1.833.1077 6,2 ;
Ly = 21 — 1.135.10~2 0, -+ 0.355-10~%0,2

(0° <oy << 300° K) 5 (3.9

¢8> = 83 — 0.217-1072 5; — 0.283-107%0,* ,

3.10
<3 (2n)> = 0.610--0.425 0, + 9.5 0,2, ( )

<Ly = 6.0 + 150, + 5-102 62 (0 < 0, << 0.02);

¢Sy =99.2 — 406, + 2.103 0,2
Calculations based on Eqs. (3.4)~(3.8) gave the following formula
for the correlation function of the output cs(zpy,) RA(E)) (in the calcula-
tion N =3, <T(0)> = 3000°K, ¢ (0) == 0.95 and o, = 100° K):
R ,(6) = 1.122.107% r, (6)

+ 1.62-1078r72 (8) + 6.61-1078 rz% (6), (3.11)
The relative error in determining the correlation function of the
output c3(zy,) is on the order of 10%.

CONCLUSIONS

The approximate analytic expressions obtained make it possible to
treat the plasmochemical reactor as a nonlinear converter with inputs
T(0) and c4(0) and outputs c3(zm), L, Tm, and S, and the graphs in
Figs. 1 and 2 as its static characteristics.

From a comparison of the graphs in Figs. 1 and 2 it is clear that in
the given region of variation of T(0) and ¢4(0) the maximum of the
acetylene concentration cg(2yy,) is more sensitive to variation of the
input T(0), which obviously must be taken into account in controlling
the output c(zp).

The static characteristics obtained make it possible to consider the
problem when T(0) and ¢, (0) are random functions of time.
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We have found the mathematical expectations of the outputs cg(zmy), L,
and S as functions of the standard deviations ofthe inputs T(0) and ¢; (0).

The graphs in Figs. 3 and 4 show that in the presence of random
fluctuations of the inputs T(0) and ¢;(0) the mean value of the output
of the acetylene target product cy(z, ) may be reduced by about 5.5%.

A method of calculating the correlation functions of the outputs
has been demonstrated with reference to the ourput ¢s(2y,).

The static characteristics obtained for the plasmochemical reactor
can be used in solving a number of problems:

a) controlling the end state of the process, e.g., the maximum
acetylene concentration, by varying the inputs ¢;(0) and T(0);

b) solving the more gemreral problem of the choice of optimal (for
a given optimality criterion) values of the inputs T(0) and ¢, (0); etc.

The correlation functions of the inputs and outputs can be used to
solve problems of predicting the behavior of the reactor outputs (in
the presence of fluctuating inputs by means of the theory of stationary
random functions).

I am grateful to L. S. Polak and Yu. L. Khait for supervising and
discussing my work.
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