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The following system of first-order ordinary nonlinear differential 
equations, which in certain approximations simulates the plasmo- 
chemical process of conversion of methane to acetylene in a hydrogen 
plasma jet, was examined in [1]: 
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Here, c i is the mass concentration of the i-th substance (i = 1-5, 
1--CHa, 2--C2H,, a--C2H2, 4--C, 5--H2), hij is the coefficient in the 

expansion of the enthalpy of the i-th substance with respect to tem- 
perature T, h[ is the heat of formation of the i-th substance, ki(T) is 
the rate constant for decomposition of the i-th substance, N and M are 
constants of integration determined from the initial conditions, R is 
the gas constant, and Pi is the molecular weight of the i-th substance. 

By means of a numerical integration of system (0.1)-(0.3) on a 
computer for various initial methane concentrations ca(0) (% (0) = 1 - 
- c1(0), c2(0 ) = %(0) = %(0) = 0), initial temperatures T(0), and 
initial plasma jet velocities v(0), it was shown that the variation of 
cx(0 ) and T(0) has an important influence on thekinetics of the process, 
whereas the variation of v(0) does not affect the kinetics of the chem- 
ical reactions, but merely changes the spatial scales of the process. 

Since system (0.1)-(0.3) cannot be solved analytically, it is im- 
possible to both establish directly a functional relationship between its 
solutions and the initial conditions and investigate the dependence of 
the solution on the initial conditions in general form. 

However, it is possible to use the results of a numerical integration 
of system (0.1)-(0.3) with various initial conditions to establish ap- 
proximate relations between the solutions and the initial conditions 
for a particular value of z = z m. For z m we can take the point at 
which the acetylene concentration obtained from solving system 
(0.1)-(0.3) reaches a maximum, which, as shown in [2], can belargely 
preserved by a suitable choice of the conditions and point of cooling. 

In what follows, we establish the approximate functional depen- 
dence (at the point Zm) on the initial conditions T(0) and ca(0) (the 
inputs) for the following four quantities (the outputs): 

a) The length of the section from the beginning of the reactor 
(z = 0) to z = z m. This section, through which the process of conver- 
sion of methane to acetylene chiefly takes place, will be denoted by 
L and, in accordance with the terminology of [8,4], will be calIed 
the effective length of the plasmochemical reactor. 

b) The reaction time Tin, determined from Eq. (0.3), 

o 

c) The maximum acetylene concentration cs(Zm). 
d) The degree of decomposition of the methane 

cl (0) -- cl (Zm) . (0.4) 
S : cr (0) 

Two aspects of the problem wiI1 be considered. First, a method is 
proposed which makes it possible to treat the plasmochemical reactor 
described by a system of equations analogous to (0.1)-(0.8) as a 
nonlinear converter. Secondly, the effect of fluctuations of the initial 
conditions is examined. 

1. Dependence of L, rm, cs(zm), and S on c~(O)and T(0). By 
numerically integrating system (0.1)-(0.3) for five variants of each of 
the inputs e,(0) or T(0) with the other input fixed, we can construct 
graphs of all the outputs L, r m ,  Cs(Zm), and S as functions of the in- 
puts cz(0 ) and T(0). 

Curves 1-4  in Fig. 1 give the dependence of %(Zm), L, r m ,  and 
S on T(0) for fixed ct(0 ) = 0 95 and v(0) = 3 �9 104 cm/sec (here and 
henceforth the concentrations are given in weight fractions). 

CnrveS 1-4  in Fig. 2 give the dependence of C3(zm), L, r m, and 
S on cl(0 ) for fixed T(0) = 3.5 �9 103~ K and v(0) = 3 �9 104 em/sec. 

Using these graphs, it is possible to derive approximate linear 
quadratic analytical relations between the given outputs and inputs. 
The relations between the outputs c3(Zm), L, t in ,  and S and the inputs 
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T(0) and c , ( 0 )  are  represen ted  by  Eqs. ( 1 . 1 ) - ( 1 . 8 ) ,  r e spec t ive ly :  

ca (Zm) = 0 . t25  + 3 . 5 . t 0  -~ (T (0) - -  2000~ 

2000 < T (0) -.< 3000 ~ K ; 

ca (Zm) = 0.476 + 3 . 4 4 . t 0  -~ (T (0i - - 3 0 0 0  ~ - -  

- -  t . 6 . 1 0  - ~  ( T  ( 0 )  - -  3 0 0 0 ~ )  z , 

3000 '~ ~ T (0) ~,~ 3500 ~ ; (1.1) 

L = 67 - -  9 . t 0  -~ (T(0) - -  2000 '~) + 0 . 4 4 . t 0  -~ (T (0) - -  2000 ~ ~, 

20000 ..< T (0) ~ 3000 ~ K ; 

L = 2 t - - 2 . 6 . 1 0  ~ ( r  (0) - -  3000  ~ - -  0 . 8 . t 0  -a (T (0) - -  3000~) ~, 

3000  ~ < T (0) ,,< 3500 ~ K ; (1,2)  

"~ra = 2 .357" t0  - ~ - 2 . 9 9 ' t 0 - ~  (T (0) - -  2000 ~ + 

+ 1 . 4 4 . t 0  -~ (T (0) - -  2000) ~, 

2000  ~ ~ T(0) ~ 3000 ~ K ; 

�9 r m = 0.78.10-~ - -  0 . t l3 .10-~T(0)  -- 3000~ 

3000 ~ ~< T (0) < 3500 ~ K ; ( 1 . 3 )  

S = 24.7 + 5 .83 - t0  -~ (T (0) - -  2000~ 

2000 ~ ~ T (0) ~ 3000 ~ K ;  

S = 83 + 0 . 5 5 8 - t 0  - r  (T (0) - -  3000 ~ ) - -  (1.4)  

- -  0 . 4 6 4 . t 0  -a (T (0) - -  3000~ ~ , 

3000 ~ ~ T (0) ~ 3500 ~ K ; 

ca (Zm) = 0.5887 q- 0.33 ( q  (0) - -  0.87), 0.87 ~ c r (0) ~ 0.93 

ca (zm) = 0.6085 -}- 0A758  ( q  (0) - -  0.93) - -  4.29 (c~ (0) - -  0.93) ~, (1.5)  

0.93 ~ c, (0) ~ 0 .99 ,  

L = 2.0 -}- 2 i .7  ( q  (0) - -  0.87) -}- 3 .88 .10  = ( q  (0) - -  0.87) ~, 

0.87 ~ c~ (0) ~ 0 .93;  
(1.6) 

L = 4 .7  _L 2 4 . t 7  (c:t (0) - -  0 .93)  -}- 2 . 0 4 . t 0  a (0. (0) - -  0 .93)% 

0 . 9 3 ~ e l  (0) ~ 0 .99  ; 

"rm = 0 . 2 7 7 . t 0 - *  - -  0 . 6 2 5 . 1 0  -x  c:t (0) 'q- 0 . 3 5 3 . t 0  -x  da~(O), 

(LT) 
0.87 ~ c 1 (0) ~ 0.99 ; 

S = t00,  0.87 ~ c~ (0) % 0 .93 ,  

S = t00  - -  0 . 3 9 t . t 0  ~ (q(0) - -  0.93) - -  0.417 (cr(0) - -  0.93) ~, (1.8) 

0.93 < c~ (0) < 0 . 9 9 .  

These  re la t ions  show tha t  wi th  respec t  to the  inputs e , ( 0 )  and T(0) 

the p l a s m o e h e m i c a l  r e ac to r  is a non l inear  conver t e r  and  the  graphs 

and  co r respond ing  a p p r o x i m a t e  a n a l y t i c  expressions a re  its non l inea r  

c h a r a c t e r i s t i c s .  

2.  Effect  o f  f l u c t u a t i n g  in i t i a l  condi t ions  on the  solut ions o f  sys tem 

( 0 . 1 ) - ( 0 . 8 ) .  F o r m u l a t i o n  o f  t he  p r o b l e m .  In the  above  c a l c u l a t i o n s  

c~(O) and T(0) were  assumed to be  i ndependen t  of  t ime .  Thus the 

cha rac t e r i s t i c s  ob ta ined  for t h e  r eac to r ,  r ega rded  as a non l inea r  con-  

ver ter ,  a re  its s t a t i c  cha rac t e r i s t i c s .  

In fac t ,  the  in i t i a l  m e t h a n e  c o n c e n t r a t i o n  and  the  in i t i a t  t e m p e r a -  

tu re  of  the  gas m ix tu r e  e x p e r i e n c e  r a n d o m  f luc tua t ions  in t i m e .  

We wil l  descr ibe  the  r a n d o m  f luc tua t ions  of e,(O) and T(0) i n t e r m s  

of s t a t ionary  r a n d o m  func t ion  [5, 6], a s suming  tha t  c , ( 0 )  and T(0) a re  

abso lu te ly  cont inuous  s t a t ionary  n o r m a l  r a n d o m  func t ions  of  t i m e .  In 

order  to c o m p a r e  the  results ob t a ined  with e x p e r i m e n t a l  da t a ,  it  is 
obvious ly  necessa ry  to m a k e  the  fur ther  a s sumpt ion  tha t  t he  r a n d o m  
func t ions  are  e rgo ie .  For this a s sumpt ion  it is su f f ic ien t  tha t  the i r  
a u t o c o r r e l a t i o n  func t ions  do not tend  too s lowly to zero [6]. 

S ince  the inves t iga ted  r andom funct ions  vary  on a f in i te  in terva l  

i x . ,  x ~ (here x represents  e i the r  of the two funct ions  q ( 0 )  or T(0)), it 

is necessa ry  to use t r u n c a t e d  n o r m a l  dis t r ibut ions [7]. 

The  o n e - d i m e n s i o n a l  t r unca t ed  n o r m a l  d i s t r ibu t ionhas  the  fo l lowing  

form: 

h (~i) ~ I -  (~,-- <z>F-] , _ L -  ~ ) w n e n * *  < =, <.~~ : Dr (2adxe)/~ exp 

h (xr) = 0 when :c'I < x , ,  z, > x ~ , 
z~ = z (h ) .  (2.1) 

Here ,  o x is the  s tandard  dev i a t i on  of the  s t a t iona ry  r a n d o m  func-  

t ion.  
The  quan t i t y  Dx is s e l ec t ed  so that  f~(xx) is n o r m a l i z e d  to uni ty on 

the  g iven  in te rva l  of  the r a n d o m  funct ion .  

If the  inputs of  the  nonl inear  conver te r  a r e  s t a t ionary  r a n d o m  func-  

tions of t ime ,  its outputs  L, r m ,  Cs(Zm), and  S wi l l  also be  s ta t ionary  

r a n d o m  funct ions of t i m e  (we assume tha t  the  non l inea r  conver te r  has 

s t a t ionary  charac te r i s t i c s ) .  In order to d e t e r m i n e  the  s t a t i s t i ca l  p rop-  

ert ies of these r andom funct ions  we use Eqs. ( 1 . 1 ) - ( 1 . 8 ) ,  hav ing  as-  

sumed  that  the non l inea r  conver te r  is iner t ia less  [8, 8, 9]; i . e . ,  for a 

g iven  t i m e  t, any  output  y(t) is expressed as a func t ion  of  some input  

x(t) a t  t he  s a m e  m o m e n t  of t i m e :  

(t) = q~ [x(t)], (2.2) 

3. D e t e r m i n a t i o n  of t he  m a t h e m a t i c a l  expec t a t i ons  and  c o r r e l a -  

t ion  funct ions  of  L, es(Zm), and  S. A knowledge  of  t he  co r re l a t ion  
func t ion  and  m a t h e m a t i c a i  e x p e c t a t i o n  of the r a n d o m  output  func t ion  

is of f u n d a m e n t a i  p r a c t i c a l  i m p o r t a n c e  in the  inves t iga t ion  and de-  

s ign of  non l inea r  systems.  

The  m a t h e m a t i c a l  e x p e c t a t i o n  <g> of  the  s t a t ionary  r a n d o m  

process  y(t)  a t  the output  o f  an  iner t ia iess  non l inear  conve r t e r  is de-  

f ined as follows [10]: 

where  

<y> = <y~> + <g2> , 

2 k 
X~ A f V  k! <y,>=Dr f ~ ~, ~ , ~  ~2(<x>-- 

O ' - -  z , )  ~-z [ ? z ( ~ 0 ) -  z(~,) ]};  

2 k 

{l~= ]~! ~xl(<x>__ <y~> ~ D~  "~j  A~. 2 
#~=0 = o  II. (k  - -  1)! 

(3A)  

- -  x0) sc-t tOt(K~ - Qz(~0)l}; (3.2) 

x0 is a v a l u e  of x d iv id ing  the  region  of  va r i a t ion  ix, ,  x ~] in to  two parts;  

1 t x -  < x >  

- - o o  

Here,  Ak2 , Ak2 are  the  cons tan t  coef f ic ien t s  in Eqs. (i.i)-(1.8). 

The fo rmula  for the  co r re l a t ion  func t ion  is wr i t t en  as follows [10]: 

oo 

B u (0) = ~ Bn ~" (<x>, ~x) ~ ,  (0 = t2 - -  6 ) ;  (3.4) 

Bn ( <X>, ax)= D1 "~i '~. A. .  k! ~x~(<x>_ 
~.=o ~o "*l! (k - O! 

_ ~,)k-z [Mzn (~0) - -  M~,, (~,)1 + (3.5) 

+ D~ ~ ,  A,~  k! %z  (<~> _ 
"~ I! (k - -  l)! 

t , ~ 0  l ~ 0  

a~o) t~-z [Mzn (~~ - -  .V4n (~o)] ;  

r d ~ q~ (~) 1 -- T "  
Mzn (~) ~t 3 (2n) 

- -co  

( 3 . s )  

rx(O ) is the a o r m a l i z e d  a u t o c o = e l a t i o n  func t ion  of input  x. 
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In practical calculations, using (3.4) it is necessary to confine one- 
self to a finite number of terms of the series N. An estimate of the ac- 
curacy of the approximate determination of the correlation function 
Ry(0) is given by the following expression [10]: 

I R~ (0) - -  R~" (0) I -.< %~ - -  %'" : (3 .7)  
N 

G '  (0) = ~ BZ-(<x>, ~) ~ ,  
n=l 

N 

~'~ = R~" (0) = ~, ~'~ (<~>, ~) (3.s) 
n=l 

The results of a calculation of the dependence of the mathematical  

expectations <c a (Zm)> , <L>, and <S>on the standard deviation of the ini- 

t ial  temperature o I for a given mathematical expectation of the initial 
temperature <T (0)> = 3000 ~ K and a constant value of the initial 
methane concentration c• = 0.95 are represented by curves 1, 2, 
and 3 in Fig. 3, respectively. Similarly, in Fig. 4 curves 1, 2, and 
3 represent the dependence of<c~ (z,0>, <L>, and <S> on the standard 
deviation of the initial methane concentration 02 (mathematical ex- 
pectation of the initial methane concentration <c t (0)) = 0.95 and 
the constant value of the initial temperature T(0) = 3500* K). 

On the basis of these graphs we constructed the following approxi- 
mate analytic expressions: 

<c3 (zm)> = 0.475--3.166'10-5(Jr -- 1.833"t0-7 ol 2 ; 

<L> = 2t --  1.135.t0 -2 cr 1 @ 0.355.10-4~1 ~ 

( 0q ~.~ (h. ~,~ 300~ K) ; (3.9) 

(S> = 83 --  0.217.t0 -2 o" 1 - -  0.283<10-a(J1 ~ ; 

(3.1o) 
r (Zm)> ~ 0.6t0--0.425 (L~ -{- 9.5 ~2 ; 

<L> = 6.0 -}- t5 o 2 -}- 5.102 (~2 (0 ~.~ (~ ~ 0.02); 

<S> = 9 9 . 2 -  40 (J,-t- 2"10 a (~e. 

Calculations based on Eqs. (3.4)-(3.6) gave the following formula 
for the correlation function of the output Cs(Zm) RA(0) (in the calcula- 
tion N =  3, <T(0)> = 3000 "K,  c r(0) = 0.95 and ( ~ =  t00 ~  

Rn'(O ) = t.122.t0 -3 r T (0) @ 

q- t.62.10"-6rT2 (0) -~- 6.6t ' t0 -s rTa (0). (3.ii) 

The relative error in determining the correlation function of the 
output c3(Zm) is on the order of 10%. 

CONCLUSIONS 

The approximate analytic expressions obtained make it possible to 
treat the plasmochemical reactor as a nonlinear converter with inputs 
T(0) and ci(0) and outputs ca(Zm), L, rm,  and S, and the graphs in 
Figs. 1 and 2 as its static characteristics. 

From a comparison of the graphs in Figs. 1 and 2 it is clear that in 
the given region of variation of T(0) and ct(0) the maximum of the 
acetylene concentration cs(Zm) is more sensitive to variation of the 
input T(0), which obviously must be taken into account in controlling 

the output ca(Zm). 
The static characteristics obtained make it possible to consider the 

problem when T(0) and ca(0) are random functions of time. 
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We have found the mathematical expectations of the outputs ca(Zm), L, 
and S as functions of the standard deviations of the inputs T(0)and c, (0). 

The graphs in Figs. 3 and 4 show that in the presence of random 
fluctuations of the inputs T(0) and c~(0) the mean value of the output 
of the acetylene target product ca(Zm) may be reduced by about 5.5~ 

A method of calculating the correlation functions of the outputs 
has been demonstrated with reference to the output ca(Zm). 

The static characteristics obtained for the plasmochemical reactor 
can be used in solving a number of problems: 

a) controlling the end state of the process, e.g., the maximum 
acetylene concentration, by varying the inputs c1(0 ) and T(0); 

b) solving the more gerreral problem of the choice of optimal (for 
a given optimality criterion) values of the inputsff(0) and c1(0); etc. 

The correlation functions of the inputs and outputs can be used to 
solve problems of predicting the behavior of the reactor outputs (in 
the presence of fluctuating inputs by means of the theory of stationary 
random functions). 

I am grateful to L. S. Polak and Yu. L. Khait for supervising and 
discussing my work. 
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